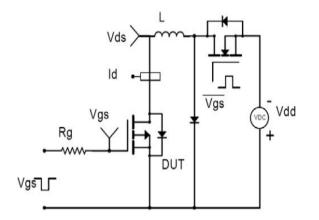


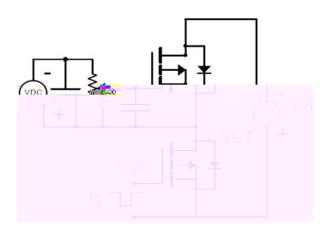
V _{DSS}	-30V				
R _{DS} (on)	26.3m (typ.)				
Ι _D	-5.8A				

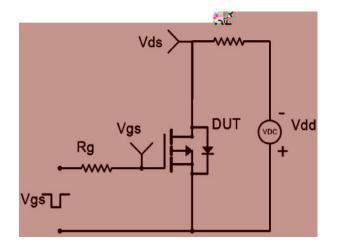
Advanced MOSFET process technology Special designed for PWM, load switching and general purpose applications Ultra low on-resistance with low gate charge Fast switching and reverse body recovery 150 operating temperature

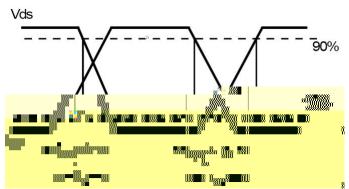
It utilizes the latest processing techniques to achieve the high cell density and reduces the on-resistance with high repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in power switching application and a wide variety of other applications.

$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	-5.8		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	-3.2	A	
Ідм	Pulsed Drain Current	-23		
P _D @T _C = 25°C	Power Dissipation	2.8	W	
V _{DS}	Drain-Source Voltage	-30	V	
V _{GS}	Gate-to-Source Voltage	± 20	V	
Tj Tstg	Operating Junction and Storage Temperature Range	-55 to +150	°C	


R JA	Junction-to-ambient (_	80	/W


$V_{(BR)DSS}$	Drain-to-Source breakdown voltage	-30	—	—	V	$V_{GS} = 0V, I_D = -250 \mu A$
$R_{\text{DS(on)}}$	Static Drain-to-Source on-resistance	—	26.3	34	m	V_{GS} = -10V, I_{D} = -5.8A
		—	33.7	44.8		V _{GS} = -4.5V,I _D = -5A
$V_{GS(th)}$	Gate threshold voltage	-0.7	—	-1.5	V	$V_{DS} = V_{GS}, I_D = -250 \mu A$
I _{DSS}	Drain-to-Source leakage current		_	-1	μA	$V_{DS} = -30V, V_{GS} = 0V$
			_	100	nA	V _{GS} =20V
I _{GSS}	Gate-to-Source forward leakage		_	-100		V _{GS} = -20V
Ciss	Input capacitance		521	_		$V_{GS} = 0V$
Coss	Output capacitance		101	_	pF	V _{DS} = -15V
Crss	Reverse transfer capacitance		66	—		f = 1MHz
Qg	Total gate charge		9	—		I _D = -5A,
Q _{gs}	Gate-to-Source charge		1.6	—	nC	V _{DS} = -15V,
Q _{gd}	Gate-to-Drain("Miller") charge		2.2	—		V _{GS} = -10V
t _{d(on)}	Turn-on delay time	—	7.6	—		
tr	Rise time	_	5.5	—		V_{GS} = -10V, V_{DS} = -15V,
t _{d(off)}	Turn-Off delay time	_	20	—	ns	R _{GEN} =6 ,R _L =2.3
t _f	Fall time		7	_		


$@T_A=25$ unless otherwise specified


Is	Continuous Source Current	—	_	-5.8	А	MOSFET symbol
	(Body Diode)					showing the Generation
Іѕм	Pulsed Source Current	_	_	-23.2	А	integral reverse
	(Body Diode)					p-n junction diode.
V _{SD}	Diode Forward Voltage	_	_	-1.2	V	Is=-5.8A, V _{GS} =0V

Calculated continuous current based on maximum allowable junction temperature.

Repetitive rating; pulse width limited by max. junction temperature.

The power dissipation P_D is based on max. junction temperature, using junction-to-case thermal resistance.

The value of R $_{JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C

Any and all Silikron products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Silikron representative nearest