

Main Product Characteristics

V _{DSS}	-30V		
R _{DS} (on)	44a (typ.)		
I _D	-4.2A		

Marking and Pin
Assignments

Schematic Diagram

Features and Benefits

- Advanced MOSFET process technology

Description

Absolute Max Rating

Symbol Parameter		Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	-4.2	
I _D @ T _C = 70°C	Continuous Drain Current, V _{GS} @ 10V	-3.5	Α
I _{DM}	Pulsed Drain Current	-30	
P _D @T _C = 25°C	Power Dissipation	1.4	W
V _{DS}	Drain-Source Voltage	-30	V
V_{GS}	Gate-to-Source Voltage	±12	V
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to +150	°C

Thermal Resistance

Symbol	Characterizes	Тур.	Max.	Units
R A	Junction-to-Ua VYbh h g		90	°C /W

Electrical Characterizes

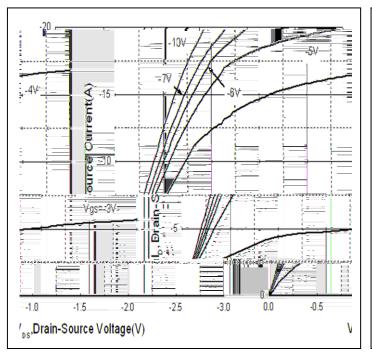
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source breakdown voltage	-30			V	$V_{GS} = 0V, I_{D} = -)$ 5
R _{DS(on)}	Static Drain-to-Source on-resistance		44	55	а	V _{GS} =-10V,I _D = -4A
			52	75		V _{GS} =-4.5V,I _D = -3A
V _{GS(th)}	Gate threshold voltage	-0.6		-1.3	V	$V_{DS} = V_{GS}, I_D = -$) 5
I _{DSS}	Drain-to-Source leakage current			-1	5	$V_{DS} = -30V, V_{GS} = 0V$
I _{GSS}	Gate-to-Source forward leakage			100	nA	V _{GS} =12V
				-100		V _{GS} = -12V
Qg	Total gate charge		11			$I_D = -4A$,
Q _{gs}	Gate-to-Source charge		2.1		nC	V _{DS} =-15V,
Q _{gd}	Gate-to-Drain("Miller") charge		2.7			$V_{GS} = -4.5V$
t _{d(on)}	Turn-on delay time		9.8			
t _r	Rise time		11			V _{GS} =-4.5V, V _{DD} =-20V,
t _{d(off)}	Turn-Off delay time		25		ns	R _{GEN} =3 F _L =20
t _f	Fall time		8			
C _{iss}	Input capacitance		758			$V_{GS} = 0V$,

C $pF \qquad V_{DS} = -20V, \\ 1 \ 1 \ MHz$

Test Circuits and Waveforms

Switch Waveforms

Notes:


Calculated continuous current based on maximum allowable junction temperature.

Repetitive rating; pulse width limited by max. junction temperature.

The power dissipation PD is based on max. junction temperature, using junction-to-

Typical Electrical and Thermal Characteristics

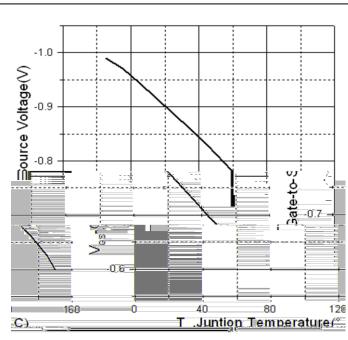


Figure 1. Typical Output Characteristics

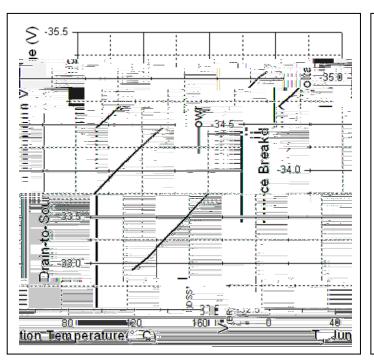


Figure 2. Gate to Source Cut-off Voltage

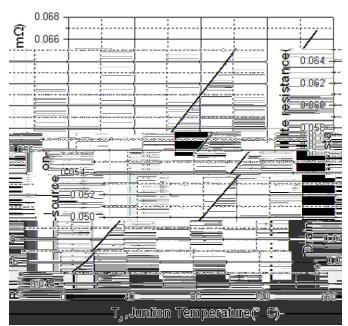
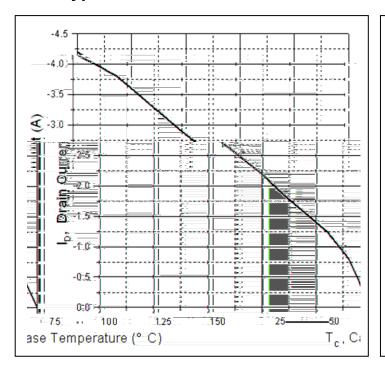


Figure 3. Drain-to-Source Breakdown Voltage vs. Junction Temperature

Figure 4. Normalized On-Resistance vs. Junction Temperature

Typical Electrical and Thermal Characteristics



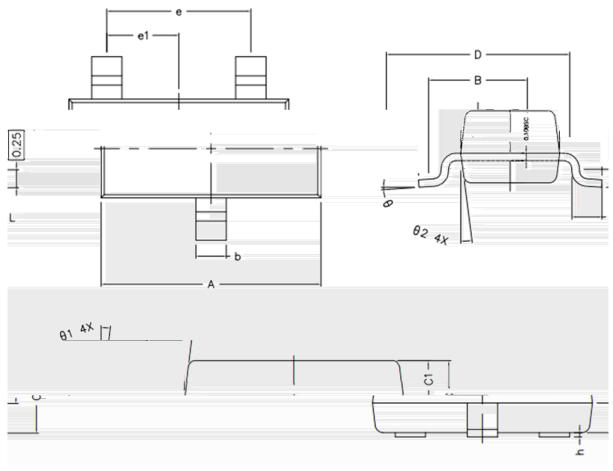


Figure 5. Maximum Drain Current vs. Case Temperature

Mechanical Data

SOT-23 Package Outline(Unit:mm)

ATTENTION:

Any and all Silikron products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Silikron representative nearest you before using any Silikron products described or contained herein in such applications.

Silikron assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Silikron products described or contained herein.

Specifications of any and all Silikron products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, charLVMYf ghWg LbXZ bVMcbg cZh Y XYgWf VYX dfcX Wg Lg a c bhYX b h Y Wgrca Yf g dfcX Wg cf equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the c grca Yf g dfcX Wg cf Ye da Ybh Silikron Microelectronics (Suzhou) Co.,Ltd. strives to supply high-quality high-reliability products. However, any and